Causal inference of gene regulation with subnetwork assembly from genetical genomics data
نویسندگان
چکیده
Deciphering the causal networks of gene interactions is critical for identifying disease pathways and disease-causing genes. We introduce a method to reconstruct causal networks based on exploring phenotype-specific modules in the human interactome and including the expression quantitative trait loci (eQTLs) that underlie the joint expression variation of each module. Closely associated eQTLs help anchor the orientation of the network. To overcome the inherent computational complexity of causal network reconstruction, we first deduce the local causality of individual subnetworks using the selected eQTLs and module transcripts. These subnetworks are then integrated to infer a global causal network using a random-field ranking method, which was motivated by animal sociology. We demonstrate how effectively the inferred causality restores the regulatory structure of the networks that mediate lymph node metastasis in oral cancer. Network rewiring clearly characterizes the dynamic regulatory systems of distinct disease states. This study is the first to associate an RXRB-causal network with increased risks of nodal metastasis, tumor relapse, distant metastases and poor survival for oral cancer. Thus, identifying crucial upstream drivers of a signal cascade can facilitate the discovery of potential biomarkers and effective therapeutic targets.
منابع مشابه
Gene Regulatory Network Reconstruction Using Bayesian Networks, the Dantzig Selector, the Lasso and Their Meta-Analysis
Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed to infer gene regulatory networks. The fifth "Dialogue for Reverse Engineering Assessments and Methods" (DREAM5) challenges are aimed at assessing methods and...
متن کاملAdvances in Genetical Genomics of Plants
Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differe...
متن کاملRegulatory network identification by genetical genomics: signaling downstream of the Arabidopsis receptor-like kinase ERECTA.
Gene expression differences between individuals within a species can be largely explained by differences in genetic background. The effect of genetic variants (alleles) of genes on expression can be studied in a multifactorial way by the application of genetical genomics or expression quantitative trait locus mapping. In this paper, we present a strategy to construct regulatory networks by the ...
متن کاملCausal Gene Network Inference from Genetical Genomics Experiments via Structural Equation Modeling
The goal of this research is to construct causal gene networks for genetical genomics experiments using expression Quantitative Trait Loci (eQTL) mapping and Structural Equation Modeling (SEM). Unlike Bayesian Networks, this approach is able to construct cyclic networks, while cyclic relationships are expected to be common in gene networks. Reconstruction of gene networks provides important kno...
متن کاملGene network inference via structural equation modeling in genetical genomics experiments.
Our goal is gene network inference in genetical genomics or systems genetics experiments. For species where sequence information is available, we first perform expression quantitative trait locus (eQTL) mapping by jointly utilizing cis-, cis-trans-, and trans-regulation. After using local structural models to identify regulator-target pairs for each eQTL, we construct an encompassing directed n...
متن کامل